skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Yuxuan Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Data-driven approaches to materials exploration and discovery are building momentum due to emerging advances in machine learning. However, parsimonious representations of crystals for navigating the vast materials search space remain limited. To address this limitation, we introduce a materials discovery framework that utilizes natural language embeddings from language models as representations of compositional and structural features. The contextual knowledge encoded in these language representations conveys information about material properties and structures, enabling both similarity analysis to recall relevant candidates based on a query material and multi-task learning to share information across related properties. Applying this framework to thermoelectrics, we demonstrate diversified recommendations of prototype crystal structures and identify under-studied material spaces. Validation through first-principles calculations and experiments confirms the potential of the recommended materials as high-performance thermoelectrics. Language-based frameworks offer versatile and adaptable embedding structures for effective materials exploration and discovery, applicable across diverse material systems. 
    more » « less